Skip to main content
Foundations of Information, Networks, and Decision Systems

Talk Information 10/20/2022

Title: Penalty Methods for Large-Scale Constrained Optimization Problems 
Speaker: Angelia Nedich
Date and Time: 10/20/2022 4:10 PM ET
Location: Phillips 233 and Zoom

Abstract: 
Optimization problems with a large number of constraints are emerging in many application domains such as optimal control, reinforcement learning, statistical learning, and artificial intelligence, in general. The challenges posed by the size of the problems in these applications resulted in prolific research in the domain of optimization theory and algorithms. Many refinements and accelerations of various (mainly) first-order methods have been proposed and studied, the majority of which solve a penalized re-formulation of the original problem in order to cope with a large number of constraints. This talk will focus on problems with linear constraints and the Huber-type penalty approach. Convergence behavior and efficiency of the algorithm will be addressed, as well as some supporting theories. 

Bio:
Angelia Nedich has a Ph.D. from Moscow State University, Moscow, Russia, in Computational Mathematics and Mathematical Physics (1994), and a Ph.D. from Massachusetts Institute of Technology, Cambridge, USA in Electrical and Computer Science Engineering (2002). She has worked as a senior engineer in BAE Systems North America, Advanced Information Technology Division at Burlington, MA. Currently, she is a faculty member of the school of Electrical, Computer, and Energy Engineering at Arizona State University at Tempe. Prior to joining Arizona State University, she has been a Willard Scholar faculty member at the University of Illinois at Urbana-Champaign. She is a recipient (jointly with her co-authors) of the Best Paper Award at the Winter Simulation Conference 2013 and the Best Paper Award at the International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt) 2015.  Her general research interest is in optimization, large-scale complex systems dynamics, variational inequalities, and games.